Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Systematic modeling of discrete‐continuous optimization models through generalized disjunctive programming

Identifieur interne : 005C63 ( Main/Exploration ); précédent : 005C62; suivant : 005C64

Systematic modeling of discrete‐continuous optimization models through generalized disjunctive programming

Auteurs : Ignacio E. Grossmann [États-Unis] ; Francisco Trespalacios [États-Unis]

Source :

RBID : ISTEX:73C8F92B1065F93CED2670F7AD7AD82B0B5B621A

Descripteurs français

English descriptors

Abstract

Discrete‐continuous optimization problems are commonly modeled in algebraic form as mixed‐integer linear or nonlinear programming models. Since these models can be formulated in different ways, leading either to solvable or nonsolvable problems, there is a need for a systematic modeling framework that provides a fundamental understanding on the nature of these models. This work presents a modeling framework, generalized disjunctive programming (GDP), which represents problems in terms of Boolean and continuous variables, allowing the representation of constraints as algebraic equations, disjunctions and logic propositions. An overview is provided of major research results that have emerged in this area. Basic concepts are emphasized as well as the major classes of formulations that can be derived. These are illustrated with a number of examples in the area of process systems engineering. As will be shown, GDP provides a structured way for systematically deriving mixed‐integer optimization models that exhibit strong continuous relaxations, which often translates into shorter computational times. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3276–3295, 2013

Url:
DOI: 10.1002/aic.14088


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Systematic modeling of discrete‐continuous optimization models through generalized disjunctive programming</title>
<author>
<name sortKey="Grossmann, Ignacio E" sort="Grossmann, Ignacio E" uniqKey="Grossmann I" first="Ignacio E." last="Grossmann">Ignacio E. Grossmann</name>
</author>
<author>
<name sortKey="Trespalacios, Francisco" sort="Trespalacios, Francisco" uniqKey="Trespalacios F" first="Francisco" last="Trespalacios">Francisco Trespalacios</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:73C8F92B1065F93CED2670F7AD7AD82B0B5B621A</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/aic.14088</idno>
<idno type="url">https://api.istex.fr/document/73C8F92B1065F93CED2670F7AD7AD82B0B5B621A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001A83</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001A83</idno>
<idno type="wicri:Area/Istex/Curation">001A83</idno>
<idno type="wicri:Area/Istex/Checkpoint">000A06</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000A06</idno>
<idno type="wicri:doubleKey">0001-1541:2013:Grossmann I:systematic:modeling:of</idno>
<idno type="wicri:Area/Main/Merge">006004</idno>
<idno type="wicri:Area/Main/Curation">005C63</idno>
<idno type="wicri:Area/Main/Exploration">005C63</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Systematic modeling of discrete‐continuous optimization models through generalized disjunctive programming</title>
<author>
<name sortKey="Grossmann, Ignacio E" sort="Grossmann, Ignacio E" uniqKey="Grossmann I" first="Ignacio E." last="Grossmann">Ignacio E. Grossmann</name>
<affiliation wicri:level="3">
<country>États-Unis</country>
<placeName>
<settlement type="city">Pittsburgh</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:orgArea>Center for Advanced Process Decision‐making, Dept. of Chemical Engineering, Carnegie Mellon University, PA, 15213</wicri:orgArea>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Trespalacios, Francisco" sort="Trespalacios, Francisco" uniqKey="Trespalacios F" first="Francisco" last="Trespalacios">Francisco Trespalacios</name>
<affiliation wicri:level="3">
<country>États-Unis</country>
<placeName>
<settlement type="city">Pittsburgh</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:orgArea>Center for Advanced Process Decision‐making, Dept. of Chemical Engineering, Carnegie Mellon University, PA, 15213</wicri:orgArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">AIChE Journal</title>
<title level="j" type="alt">AICHE JOURNAL</title>
<idno type="ISSN">0001-1541</idno>
<idno type="eISSN">1547-5905</idno>
<imprint>
<biblScope unit="vol">59</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="3276">3276</biblScope>
<biblScope unit="page" to="3295">3295</biblScope>
<biblScope unit="page-count">20</biblScope>
<date type="published" when="2013-09">2013-09</date>
</imprint>
<idno type="ISSN">0001-1541</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0001-1541</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>2ceq 2craw</term>
<term>5true</term>
<term>Aiche</term>
<term>Aiche journal</term>
<term>Aiche journal september</term>
<term>Aiche september</term>
<term>Algebraic</term>
<term>Algebraic equations</term>
<term>Algebraic form</term>
<term>Algorithm</term>
<term>Basic step</term>
<term>Basic steps</term>
<term>Binaries number</term>
<term>Binary</term>
<term>Binary variables</term>
<term>Boolean</term>
<term>Boolean variables</term>
<term>Carnegie mellon university</term>
<term>Chem</term>
<term>Color figure</term>
<term>Comput</term>
<term>Comput chem</term>
<term>Constraint</term>
<term>Constraints number</term>
<term>Continuous relaxation</term>
<term>Continuous relaxations</term>
<term>Continuous variables</term>
<term>Convex</term>
<term>Convex hull</term>
<term>Craw</term>
<term>Craw craw</term>
<term>Disaggregated</term>
<term>Disaggregated variables</term>
<term>Disjunction</term>
<term>Disjunctive</term>
<term>Disjunctive branch</term>
<term>Disjunctive programming</term>
<term>Falseg</term>
<term>Feasible region</term>
<term>Feed tray</term>
<term>Ftrue</term>
<term>Gdp1</term>
<term>Generalized disjunctive programming</term>
<term>Global</term>
<term>Global constraints</term>
<term>Global optimization</term>
<term>Grossmann</term>
<term>Hull relaxation</term>
<term>I2dk</term>
<term>Inequality</term>
<term>Investment cost</term>
<term>Linear case</term>
<term>Linear constraints</term>
<term>Logic constraints</term>
<term>Logic proposition</term>
<term>Logic propositions</term>
<term>Lower bounds</term>
<term>Milp</term>
<term>Minlp</term>
<term>Modeling</term>
<term>Nodes solution time</term>
<term>Nonconvex</term>
<term>Nonlinear</term>
<term>Objective function</term>
<term>Online issue</term>
<term>Optimal design</term>
<term>Optimal solution</term>
<term>Optimization</term>
<term>Optimization problems</term>
<term>Particular case</term>
<term>Perfect formulation</term>
<term>Problem size</term>
<term>Process network</term>
<term>Process synthesis</term>
<term>Process systems engineering</term>
<term>Processing times</term>
<term>Programming</term>
<term>Propositional logic</term>
<term>Reformulation</term>
<term>Reformulations</term>
<term>Relaxation</term>
<term>Relaxation number</term>
<term>Ruiz</term>
<term>Sawaya</term>
<term>Scheduling</term>
<term>September</term>
<term>Small example</term>
<term>Solver</term>
<term>Superstructure</term>
<term>Systematic modeling framework</term>
<term>Tighter</term>
<term>Variables number</term>
<term>Yrawa</term>
<term>Yrawa yrawb</term>
<term>Yrawb</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>2ceq 2craw</term>
<term>5true</term>
<term>Aiche</term>
<term>Aiche journal</term>
<term>Aiche journal september</term>
<term>Aiche september</term>
<term>Algebraic</term>
<term>Algebraic equations</term>
<term>Algebraic form</term>
<term>Algorithm</term>
<term>Basic step</term>
<term>Basic steps</term>
<term>Binaries number</term>
<term>Binary</term>
<term>Binary variables</term>
<term>Boolean</term>
<term>Boolean variables</term>
<term>Carnegie mellon university</term>
<term>Chem</term>
<term>Color figure</term>
<term>Comput</term>
<term>Comput chem</term>
<term>Constraint</term>
<term>Constraints number</term>
<term>Continuous relaxation</term>
<term>Continuous relaxations</term>
<term>Continuous variables</term>
<term>Convex</term>
<term>Convex hull</term>
<term>Craw</term>
<term>Craw craw</term>
<term>Disaggregated</term>
<term>Disaggregated variables</term>
<term>Disjunction</term>
<term>Disjunctive</term>
<term>Disjunctive branch</term>
<term>Disjunctive programming</term>
<term>Falseg</term>
<term>Feasible region</term>
<term>Feed tray</term>
<term>Ftrue</term>
<term>Gdp1</term>
<term>Generalized disjunctive programming</term>
<term>Global</term>
<term>Global constraints</term>
<term>Global optimization</term>
<term>Grossmann</term>
<term>Hull relaxation</term>
<term>I2dk</term>
<term>Inequality</term>
<term>Investment cost</term>
<term>Linear case</term>
<term>Linear constraints</term>
<term>Logic constraints</term>
<term>Logic proposition</term>
<term>Logic propositions</term>
<term>Lower bounds</term>
<term>Milp</term>
<term>Minlp</term>
<term>Modeling</term>
<term>Nodes solution time</term>
<term>Nonconvex</term>
<term>Nonlinear</term>
<term>Objective function</term>
<term>Online issue</term>
<term>Optimal design</term>
<term>Optimal solution</term>
<term>Optimization</term>
<term>Optimization problems</term>
<term>Particular case</term>
<term>Perfect formulation</term>
<term>Problem size</term>
<term>Process network</term>
<term>Process synthesis</term>
<term>Process systems engineering</term>
<term>Processing times</term>
<term>Programming</term>
<term>Propositional logic</term>
<term>Reformulation</term>
<term>Reformulations</term>
<term>Relaxation</term>
<term>Relaxation number</term>
<term>Ruiz</term>
<term>Sawaya</term>
<term>Scheduling</term>
<term>September</term>
<term>Small example</term>
<term>Solver</term>
<term>Superstructure</term>
<term>Systematic modeling framework</term>
<term>Tighter</term>
<term>Variables number</term>
<term>Yrawa</term>
<term>Yrawa yrawb</term>
<term>Yrawb</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Coût d'investissement</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Discrete‐continuous optimization problems are commonly modeled in algebraic form as mixed‐integer linear or nonlinear programming models. Since these models can be formulated in different ways, leading either to solvable or nonsolvable problems, there is a need for a systematic modeling framework that provides a fundamental understanding on the nature of these models. This work presents a modeling framework, generalized disjunctive programming (GDP), which represents problems in terms of Boolean and continuous variables, allowing the representation of constraints as algebraic equations, disjunctions and logic propositions. An overview is provided of major research results that have emerged in this area. Basic concepts are emphasized as well as the major classes of formulations that can be derived. These are illustrated with a number of examples in the area of process systems engineering. As will be shown, GDP provides a structured way for systematically deriving mixed‐integer optimization models that exhibit strong continuous relaxations, which often translates into shorter computational times. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3276–3295, 2013</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>Pittsburgh</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Grossmann, Ignacio E" sort="Grossmann, Ignacio E" uniqKey="Grossmann I" first="Ignacio E." last="Grossmann">Ignacio E. Grossmann</name>
</region>
<name sortKey="Grossmann, Ignacio E" sort="Grossmann, Ignacio E" uniqKey="Grossmann I" first="Ignacio E." last="Grossmann">Ignacio E. Grossmann</name>
<name sortKey="Trespalacios, Francisco" sort="Trespalacios, Francisco" uniqKey="Trespalacios F" first="Francisco" last="Trespalacios">Francisco Trespalacios</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005C63 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 005C63 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:73C8F92B1065F93CED2670F7AD7AD82B0B5B621A
   |texte=   Systematic modeling of discrete‐continuous optimization models through generalized disjunctive programming
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021